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Summary
CAN is an excellent and well-proven protocol for the control task in a Distributed 
Embedded Control System. It is not well suited for requirements that relate to the security 
of messages and the re-flashing of ECUs that demand a high bit rate. The primary reason 
for this is that CAN uses a very simple bit transfer method and a low bitrate at the 
arbitration phase. The bit transfer during the arbitration phase is a remnant of the 
technology around at the time when CAN was conceptualized in the 80s.  

The bandwidth required for pure control tasks is governed by the dynamics of the 
machinery to be controlled. CAN is good enough for controlling any car of the future, as a 
car will have roughly the same size and dynamics. Other tasks, however, such as 
encryption, transfer of raw data from advanced sensors and cameras, RADAR, LIDAR, etc. 
and flashing of ever-growing software will generate an ever-increasing request for 
bandwidth. A solution to this dilemma is the “Virtual CAN bus” where signals to and from 
ordinary CAN Controllers are multiplexed by ”intelligent” transceivers that support one or 
more modern high-speed communication protocols running on the same physical layer. In 
this way we can keep CAN for control tasks and continuously take advantage of the newest 
technology for bandwidth-hungry tasks. 

CAN is, in a sense, a unique protocol: The transmitter uses 100% of the bus bandwidth but 
the receivers use just a fraction of it. The proposed solution to the problem of CAN’s low 
bandwidth takes advantage of this peculiarity.  It introduces a “Virtual CAN Bus” (VCB), 
executed in an “intelligent” transceiver unit – a Virtual CAN Converter (VCC) – connected 
to an ordinary CAN Controller. The “intelligent” VCC transceiver encodes and transmits the 
CAN information on a modern high-speed communication. CAN signals are transmitted 
from the CAN Controller to the VCC transceiver using the TX connection, according to the 
CAN standard. However, the signals are reduced to only dominant edges and the 
respective bit values (i.e., the only thing CAN receivers identify), which are then passed 
to the lower layers of the transceiver unit.  The communication in the final system runs on 
a modern physical layer where such reduced CAN bits are multiplexed and modulated. At 
reception, the encoded CAN dominant edges and bit values are received and the receiving 
VCC transceiver restores the CAN bits and signals these to the CAN Controller RX 
connection.  

By using a Virtual CAN Bus, we separate the control task from other tasks. The distributed 
embedded control system can be developed using standard CAN Controllers and 
transceivers in a traditional way with well proven tools. Other tasks such as encryption, 
transmitter authentication, re-flashing, etc. can be developed by experts in these fields 
and carried out by using other protocols. With modern technology, the different tasks can 
run in parallel and simultaneously communicate on the same physical layer. It is a great 
advantage to separate the control problems from other problems. The control problem can 
be solved once and for all by the control experts and other problems by experts in their 
respective technology fields. Any solution to problems in those fields can be implemented 
at a later date by modifying the physical layer i.e. the transceiver and communication 
network without any impact on the control task. 

1. CAN Background
CAN was designed purposely to fit the needs of a distributed embedded controller 
network. The most important properties are: 

  



1. No addresses. All nodes receive all messages and determine if the message should 
be received or not.  

2. All nodes participate in error handling. No application receives a message if all 
nodes have not found it to be correct. 

3. Bitwise arbitration at message collisions. No message is lost, and the maximum 
latency of any message can be calculated. 

These three properties solve some general control design problems in an efficient and 
elegant way.  

- A first problem is data consistency within a system. All nodes shall have the same 
information at any given time. CAN takes care of this. 

- A second problem is a predictable latency time. CAN allows the maximum latency 
time to be calculated, even for unscheduled messages.  

- On top of that, the No Address feature makes the messages short as only a message 
identifier and a value are transported during runtime. The required bus bandwidth 
is minimized. 

  

When CAN was developed in the early 80s, it was very efficient. It made maximum use of 
the technology at hand. CAN remains an excellent protocol for control systems. However, 
new tasks have been assigned to it. The first one was flashing of ECUs. The ECU software 
is continuously growing and using CAN for this purpose proved too slow. To remediate this 
problem, Bosch started developing CAN Flexible Data rate in 2011, resulting in the ISO 
standard 11898-1:2015. With the arrival of CAN FD, flashing could be done faster, but 
more requirements were then brought to the table. Fear for system hacking requires 
encryption of the data and authentication of the transmitter and this creates more 
message overhead, i.e. longer messages. Another problem is that some safety standards 
require a Hamming Distance of a minimum of 4. Initially, CAN was said to have a Hamming 
Distance of six, but it was later shown that a data bit mistaken for a stuff bit and vice 
versa might result in the same message length and the same CRC value, in which case the 
Hamming distance is only 2. This is true also for CAN FD and this might disqualify CAN for 
use in some safety critical systems.  

Since the birth of CAN, communication technology has developed tremendously, but CAN 
FD has not taken advantage of that. It is still using the most primitive amplitude 
modulation for bit transmissions. 

In addition to distribution of control data in an efficient and reliable way (solved already 
by Classical CAN), CAN FD should also be capable of: 

  



1. Encryption of messages. 

2. Authentication of the message transmitter. 

3. Fast file transfer for ECU flashing. 

CAN FD does not seem to solve the additional problems and the Hamming distance issue 
remains. 

2. The solution
2.1 Overview 

CAN is used for feedback loop controls of systems involving mass. The bandwidth needed 
for control tasks is governed by the dynamics of the controlled items: the lower the mass, 
the higher the bandwidth needed. Most devices with CAN are related to humans. Since we 
can expect these ‘human-related’ devices to remain roughly the same size forever, we can 
safely say that the dynamic requirements of the future will be the same as today. Notably, 
many fourth-generation jet fighters are controlled by Mil 1553 systems running at 1 Mbps. 
Does a car really need a faster control system than a high performance, inherently 
unstable jet fighter? Mil 1553 is less efficient than Classical CAN, so we can expect CAN FD 
to match any control demands of the future. 

  

  

CAN is more than adequate for control tasks. The driving force for a higher bandwidth for 
CAN is instead due to non-control issues.  

  



  

We should find a way to run an “old-fashioned” CAN system with a low bitrate on a 
modern physical layer, multiplexed with another protocol with a high bitrate that carries 
all the other information needed to satisfy any requirement on top of the control task. A 
starting point is an efficient system architecture: 

  

  

Hence, let us: 

- Separate control problems from other problems 

- Use CAN for control tasks 

- For other tasks, use better suited protocols 

- Run multiplexed protocols on the same physical medium 

This can be achieved by having the transceiver establish a Virtual CAN Bus. 

  



  

  

  

The physical layer carries two or more protocols in parallel and the transceiver 
multiplexes/demultiplexes the protocols. A “Virtual CAN Converter” in the transceiver 
processes CAN messages in a specific way (more about that later). 

2.2 Essential CAN features for a Virtual CAN Converter  
 The figure below shows the construction of a CAN FD bit.  

  



  

According to the ISO standard 11898-1:2015, a CAN FD bit is constructed on Time Quanta. 
A Time Quantum (TQ) represents a number of clock cycles. A bit starts with a Sync_Seg of 
one TQ followed by a Prop_Seg, a Phase_Seg 1 and a Phase_Seg 2. The value of the bit is 
sampled at the Sample Point located between Phase_Seg 1 & 2.  

The signal on the bus is amplitude modulated in the simplest way: A zero is voltage, a one 
is no voltage.  A CAN transceiver balances the outputs CAN high (CAN_H) m and CAN low 
(CAN_L) around 2.5 V. 

!  

At the Sample Point, the bit value is decided by the differential voltage between 
CAN_H and CAN_L. 

  



  

A unique characteristic of the CAN protocol is that the transmitter occupies 100% of the 
bus bandwidth when transmitting but the receiver only a fraction of it at reception. The 
receiver only looks for flanks from an idle bus (recessive state, continuous value of 1) to 
dominant value (0), denoted as a “dominant edge,” where it makes a hard synchronization 
of the bit clock. If it samples the zero level at the sampling point, it regards the signal as 
a “Start Of Frame” (SOF) and continues to look for dominant edges (where it 
resynchronizes its bit counter) and samples the bit value at each Sample Point. Any other 
signal is ignored. Thus, the receiver only uses two or three Time Quanta of every received 
bit. CAN is a Non Return to Zero (NRZ) type of protocol so consecutive bits of the same 
value are demodulated by dead reckoning of the sample points. Stuff bits with the 
opposite value are inserted when five bits of the value are transmitted in order to keep 
the bit clocks synchronized. 

  

  



2.3 The reduced CAN Protocol 
Implemented in the Virtual CAN Controller is a “Reduced CAN Protocol” (RCP) that creates 
dominant edges at each Sync_Seg and the bit value at each Sample Point. This would take 
only one TQ for the Sync_Seg and two for the bit value. According to the CAN protocol, a 
stuff bit of the opposite value should be transmitted after five consecutive bits of the 
same value. As described earlier, this causes some problems with the Hamming Distance. 
The Virtual CAN Controller could modulate the stuff bits and send an Error Frame if a stuff 
bit is detected in the wrong place.  

  

The RCP also generates a dominant edge at the end of every bit, i.e. a “Ghost Sync_Seg” 
at each bit instance where the CAN Controller is not generating a recessive bit followed by 
a dominant bit (1/0). This keeps the CAN Controller in synch with the VCC. 

  

According to the CAN protocol, Phase_Seg 2 should be no shorter than two TQ. That being 
so the VCC can make a recessive TQ at the Phase_Seg 2 of a dominant bit and we have a 
dominant edge at every bit. However, the CAN Controller ignores any dominant edge after 
sampling a dominant value, so such an edge will not cause a resynchronization. A worst-
case scenario would then be six bits before the CAN Controller resynchronizes (five 
consecutive 0s and a stuff bit). 

The VCC will receive full bits from the CAN Controller but can reduce these to edges and 
bit value signals at the sample points. The generation of Ghost edges after dominant bits 
could be of value to the Protocol Multiplexer but if not, this VCC feature can be omitted. 

  



  

When the CAN Controller transmits, the VCC receives full bits i.e., a differential voltage 
shifts when two consecutive bits have different value, from the Tx line of the CAN 
controller. The VCC creates at least a Sync_Seg and a bit value at the Sample Point at the 
respective bit and feeds them back to the Rx line. 

The information from the VCC to the Protocol Multiplexer can be further reduced. Already 
at the Sync_seg of bits from the CAN Controller, the VCC knows the value of the bit. By 
applying some of the CAN specification rules, it can also know if it is a Start Of Frame, any 
of the fixed value bits, End O Frame, etc. and add this information to the Protocol 
Multiplexer by a modulated signal. This can be done in a fraction of the CAN bit time. 

  

As it will be shown later, the length of a CAN message can be very important. It is 
therefore an advantage if the VCC in communication with the Protocol Multiplexer 
generates an encoded SOF bit at the beginning of a message and an encoded EOF bit at 

  



the end of the message. The RCP should then be capable of generating three specific 
encoded bits: SOF, EOF and Stuff Bits. The encoding can be done in many ways, e.g. by 
amplitude modulation or phase modulation.  

  

The TQ on the CAN Controller side can be different (longer) from the PMUX side (shorter), 
as the CAN Controller side is limited by old technology but the PMUX can use modern and 
faster technology. Each Sync_Seg signal at the CAN Controller side can be modulated on 
the PMUX side to immediately also carry the bit value. As the connection between the CAN 
Controller and the VCC is a short Point-to-Point connection, the risk of disturbances is very 
low and the signal quality can be constantly supervised and acted upon.  

3 Protocol multiplexing  
The basis for the protocol multiplexing is the CAN message frame generated by the RCP at 
the VCC. Such a frame is initiated either by the CAN Controller or the Protocol Multiplexer. 
It is essential that the timing of the RCP signals is kept by and through the Protocol 
Multiplexers and the Signal Processing Units, so the VCCs can accurately create the Virtual 
CAN Bus. A CAN Message Frame starts with the dominant SOF bit followed by the Identifier 
Field and one more bit (RTR bit in Classical CAN and RRS bit in CAN FD). These bits can be 
sent simultaneously from two or more CAN Controllers. The ACK bit is sent from all 
receiving CAN Controllers.  

  



  

This can cause some difficulties for the Protocol Multiplexer and the RCP. When a bit value 
is received when more than one CAN Controller is transmitting, the bit value can appear 
anywhere in the Prop_Seg of the CAN bit. The RCP has to catch it and transmit it to the 
CAN Controller at the Sample Point. There are (at least) two ways to solve the problem: 

1. The bit value is sent continuously on the communication in the part of the CAN 
Frame where multi-transmissions are allowed. Any Second Protocol signal is 
blocked. 

2. The CAN bit values and dominant edges are modulated in a way that they can be 
filtered out at the right time and position of the CAN Frame. 

3.1. Bit Embedding  
The CAN Controller transmits a message to the VCC that reduces the bits to dominant 
edges, bit values and bit type. When the Protocol Multiplexer receives a SOF Sync_Seg, 
it synchronizes the embedded protocol to the CAN bit timing. The time between the 
encoded Sync_Seg from the VCC is used for transmitting the Second Protocol 
information. The symbol stream is sent to the Signal Processing Unit and transmitted 
on the physical medium. 

  

  



Receiving modules process the signals in reverse order. A symbol stream is received 
from the SPU and demultiplexed by the Protocol Multiplexer. The CAN symbols 
according to the RCP are fed to the VCC and the symbols of the second protocol to the 
second protocol handler. The VCC recreates the CAN bits by decoding the received 
Sync_Segs. A point-to-point connection between the CAN Controller and the VCC 
(which is generating ghost edges) ensures that the CAN Controller and Virtual CANbus 
are in perfect synchronisation. This being the case, the Sample Point can be moved as 
far as possible to the end of the bit, i.e., the Phase_Seg 1 is one TQ and the Phase_Seg 
2 two TQ long.  

  

3.2. Embedding Fake Messages
Another method to embed a second protocol is to send a fake CAN message. One CAN 
identifier is reserved for this purpose and known by the PMUX and the VCC. When the 
PMUX wants to transmit something from the second protocol, it starts the transmission 
as a CAN message with the reserved identifier and a DLC that will create a time slot 
until the EOF that can be occupied by second protocol bits.  

  

  



All VCCs will receive the first part and transmit it to their respective CAN Controller 
(bit by bit). If the fake message wins the arbitration, the respective VCC will create a 
fake message and send it to their CAN Controller. The PMUX will use the time until EOF 
for transmission of second protocol bits. More than one CAN identifier can be reserved 
and used to distinguish messages of specific kinds and addresses and/or to identify a 
third or fourth protocol, etc.  

  

3.3. Longer time slots for Second Protocol messages
Sometimes the control system uses just a fraction of the available bandwidth. One way 
to make a window for the second protocol is to set up several dummy messages. These 
dummy messages are sent back-to-back to the CAN controller. If the dummy message 
has the CAN Id Std0, it will block the CAN Controller from any attempt to transmit a 
message. During runtime of a control system, i.e. the CAN system, some messages 
require the highest priority e.g., in catastrophic situations. The dummy message 
should then have a lower priority. The VCC would then detect an attempt to transmit 
the alarm message but too late for the PMUX to transmit it. The VVC then creates a bit 
fault to the CAN Controller. The CAN Controller will respond with an error frame and 
retransmission of the alarm message. The PMUX will now get a SOF, abort the Second 
Protocol message and continue transmitting the alarm message.  

  



  

.  

4 Summary of the RCP  
The Reduced CAN Protocol generates the position and values of the essential bit quanta in 
a CAN message and the different Frame Structures from Start Of Frame (SOF) to End Of 
Frame (EOF) according to the chosen CAN Format for the actual system.  

When the CAN Controller transmits, the VCC mirrors the TX signal to the RX connection 
and conveys the following reduced CAN signals to the PMUX： 

1. The Sync_seg of every bit. 

2. The bit value by one or more of the alternatives below 

a) modulating the Sync_Seg 

b) modulating the first TQ of the Prop_Seg 

c) last TQ of Phase_Seg 1 and first TQ of Pase_Seg 2 

3. Encoded Stuff Bits 

4. Encoded SOF 

5. Encoded EOF 

At reception, the PMUX transmits the CAN primitives according to the RCP to the VCC. The 
VCC converts the primitives to CAN bits on the go and feed the signals to the CAN 
Controller. The VCC also checks the bit flow according to the Stuff Bit rules. In case of a 
mismatch, it transmits an error flag both to the CAN Controller and the PMUX. 

5 A further enhancement  
Until now it has been assumed that the ECU has a CAN Controller. This makes it easy to 
apply the invention as old ECUs can be used without any modification. For complete new 
designs, it could be advantageous to move the CAN Controller to the transceiver unit. 
There are already many such designs both for Classical CAN and CAN FD, denoted as 

  



“Standalone CAN Controllers.” In this case, the transceiver unit will have two modes, a 
“CAN Only Mode” and a “CAN Embedded Mode.” In CAN Only Mode, the PMUX is bypassed 
and the signals according to the RCP are sent directly to the bus. In this way the kernel of 
the control system can be developed in a straight forward way using well proven CAN 
tools. As only the essential signals are transmitted on the CAN bus, detailed time analysis 
of the communication can be made. In a later stage of the development, when other 
features are added to the communication, the CAN control part can be verified by 
analyzing the virtual CAN bus by examining the RCP signals from the PMUX. Other features 
can be added such as message schedulers, system clocks, etc.  
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